FAR BEYOND

MAT122

Logarithmic Derivatives Part I

Derivative of $y = log_b x$

$$\frac{d}{dx}\log_b x = \frac{1}{x \cdot \ln b}$$

$$\frac{d}{dx}a^x = a^x \cdot \ln a$$

ex.
$$(\log_7 x)'$$

ex.
$$(\log x)'$$

$Do:(\log_5 x)'$

Do:
$$(5^x)'$$

Special Case:

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

Derivative of $y = \ln x$ with Chain Rule

ex.
$$(\sqrt{\ln x})'$$

ex.
$$\frac{d}{dx} \left[\ln(x^2 - 5) \right]$$

$$= \boxed{\frac{2x}{x^2 - 5}}$$

$$= \boxed{\frac{1}{2x\sqrt{\ln x}}}$$

Log and Exponential Derivatives - Do

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}a^x = a^x \ln a$$

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}a^x = a^x \ln a$$

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

$$\frac{d}{dx}\log_b x = \frac{1}{x \cdot \ln b}$$

Do: differentiate $y = 10^x$

Do: differentiate $y = \ln(5x^2 + 1)$

Do: find $\left(e^{5x^2+1}\right)'$

Double Chain Rule

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

ex: Find
$$f'(x)$$
 when $f(x) = \ln(5x^2 + 1)^4$.

$$= \frac{40x}{5x^2 + 1}$$